- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000200000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ashour, O (2)
-
Negahban, A (2)
-
Ozden, S G (2)
-
Delva, J (1)
-
Estadt, E J (1)
-
Nguyen, K (1)
-
Stuart, K S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a study on the impact of class delivery mode (remote vs. in-person) on students’ learning experience when Immersive Simulation-Based Learning (ISBL) modules are used as course assignments. ISBL involves problem-based learning via a 3-dimensional (3D) simulated environment that mimics real-life applications such as manufacturing and healthcare systems, airports, and other service systems. Within the simulated environment, students can observe the corresponding system, collect data, understand relationships between the system components, make changes to the model and observe the impact of those changes, and learn by doing. ISBL is advantageous when access to real-world facilities is difficult or impossible due to geographical barriers or safety concerns as well as in remote and online learning due to geographically dispersed students. This study compares two groups of students. Both groups are taught by the same instructor and use the same course material, including the ISBL modules. The only difference between the two groups is the course delivery mode, where one group is taught remotely through synchronous online sessions, and the other is taught in person in a traditional classroom setting. We collect data on demographics, prior preparation, motivation, experiential learning, usability scale, and self-assessment of learning objectives based on Bloom’s taxonomy. We then perform statistical comparisons to investigate the impact of delivery mode when ISBL modules are used. We use the comparison results to test the hypothesis that ISBL modules will help maintain remote students’ motivation and learning outcomes compared to in-person students. The results show no statistically significant difference between the two groups on any measure, suggesting that ISBL is equally effective in the two delivery modes.more » « less
-
Estadt, E J; Nguyen, K; Stuart, K S; Delva, J; Negahban, A; Ashour, O; Ozden, S G (, American Society for Engineering Education (ASEE))In this paper, we introduce the Warehouse Augmented Reality Program (WARP), its functionality, practicality, and potential use cases in education. We build this application on the backbone of WebXR. Using this application programming interface (API), we create an interactive web tool that displays a life-sized warehouse in augmented reality (AR) in front of users that can be viewed on a smartphone or a tablet. AR is a technology that displays virtual objects in the real world on a digital device’s screen, allowing users to interact with virtual objects and locations while moving about a real-world environment. This tool can enhance warehousing education by making it immersive and more interactive. In addition, the tool can make warehousing operations more efficient and warehouse design less costly. We highlight how our tool can be applicable and beneficial to education and industry. We demonstrate how this tool can be integrated into a problem-based learning (PBL) assignment about warehouse layout design and order picking. The PBL activity involves comparing two different warehouse layouts (fishbone and traditional) by completing a set of order picking tasks in AR warehouse environments. The task is to perform single item picking over thirty orders and comparing the average order picking time per layout. Then, we use the results of these human subject experiments for validating the realism of the warehouse layouts generated by the tool by comparing the empirical completion times with the analytical results from the literature. We also administer a system usability scale (SUS) survey and collect feedback from industry experts.more » « less
An official website of the United States government

Full Text Available